- AC Types Feature 1.5-V to 5.5-V Operation and Balanced Noise Immunity at 30% of the Supply Voltage
- Buffered Inputs
- Incorporate Two Enable Inputs to Simplify Cascading and/or Data Reception
- Speed of Bipolar F, AS, and S, With Significantly Reduced Power Consumption
- Balanced Propagation Delays
- $\pm 24-m A$ Output Drive Current
- Fanout to 15 F Devices
- SCR-Latchup-Resistant CMOS Process and Circuit Design
- Exceeds 2-kV ESD Protection Per MIL-STD-883, Method 3015

description/ordering information

The'AC139 devices are dual 2-line to 4 -line decoders/demultiplexers designed for $1.5-\mathrm{V}$ to $5.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation. These devices are designed to be used in high-performance memory-decoding or data-routing applications requiring very short propagation delay times. In high-performance memory systems, these decoders can be used to minimize the effects of system decoding. When used with high-speed memories utilizing a fast enable circuit, the delay times of these decoders and the enable time of the memory usually are less than the typical access time of the memory. This means that the effective system delay introduced by the decoders is negligible.
The active-low enable ($\overline{\mathrm{G}}$) input can be used as a data line in demultiplexing applications. These decoders/demultiplexers feature fully buffered inputs, each of which represents only one normalized load to its driving circuit.

ORDERING INFORMATION

T_{A}	PACKAGE \dagger		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	PDIP - E	Tube	CD74AC139E	CD74AC139E
	SOIC - M	Tube	CD74AC139M	AC139M
		Tape and reel	CD74AC139M96	
	CDIP - F	Tube	CD54AC139F3A	CD54AC139F3A

\dagger Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

FUNCTION TABLE
(each decoder/demultiplexer)

INPUTS			OUTPUTS			
$\mathbf{*}$ G	SELECT					
	B	A	Y0	Y1	Y2	Y3
H	X	X	H	H	H	H
L	L	L	L	H	H	H
L	L	H	H	L	H	H
L	H	L	H	H	L	H
L	H	H	H	H	H	L

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

	. 5 V to 6 V
Input clamp current, $\mathrm{I}_{\mathrm{K}}\left(\mathrm{V}_{1}<0 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}\right)($ see Note 1)	0 mA
Output clamp current, $\mathrm{I}_{\mathrm{OK}}\left(\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}\right)$ (see Note 1)	$\pm 50 \mathrm{~mA}$
Continuous output current, $\mathrm{I}_{\mathrm{O}}\left(\mathrm{V}_{\mathrm{O}}>0 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}\right)$	$\pm 50 \mathrm{~mA}$
Continuous current through $\mathrm{V}_{\text {CC }}$ or GND	$\pm 100 \mathrm{~mA}$
Package thermal impedance, $\theta_{\text {JA }}$ (see Note 2): E package	$\begin{aligned} & 67^{\circ} \mathrm{C} / \mathrm{W} \\ & 73^{\circ} \mathrm{C} / \mathrm{W} \end{aligned}$
Storage temperature range, $\mathrm{T}_{\text {stg }}$	to 150
esses beyond those listed under "absolute maximum ratings" may cause permanen ctional operation of the device at these or any other conditions beyond those ind plied. Exposure to absolute-maximum-rated conditions for extended periods may a	ratings only, and onditions" is no
1. The input and output voltage ratings may be exceeded if the input and	
2. The package thermal impedance is calculated in accordance with JESD	

recommended operating conditions (see Note 3)

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER	TEST CONDITIONS		V_{cc}	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX			
V_{OH}	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{IOH}=-50 \mu \mathrm{~A}$		1.5 V	1.4		1.4		1.4		V
			3 V	2.9		2.9		2.9			
			4.5 V	4.4		4.4		4.4			
		$\mathrm{OH}=-4 \mathrm{~mA}$	3 V	2.58		2.4		2.48			
		$1 \mathrm{OH}=-24 \mathrm{~mA}$	4.5 V	3.94		3.7		3.8			
		$\mathrm{I}^{\mathrm{OH}}=-50 \mathrm{~mA} \dagger$	5.5 V			3.85					
		$\mathrm{IOH}=-75 \mathrm{~mA} \dagger$	5.5 V					3.85			
VOL	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	${ }^{\text {l OL }}=50 \mu \mathrm{~A}$	1.5 V		0.1		0.1		0.1	V	
			3 V		0.1		0.1		0.1		
			4.5 V		0.1		0.1		0.1		
		$\mathrm{IOL}=12 \mathrm{~mA}$	3 V		0.36		0.5		0.44		
		$\mathrm{IOL}=24 \mathrm{~mA}$	4.5 V		0.36		0.5		0.44		
		$\mathrm{lOL}=50 \mathrm{~mA} \dagger$	5.5 V				1.65		-		
		$\mathrm{l} \mathrm{OL}=75 \mathrm{~mA} \dagger$	5.5 V						1.65		
1	$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		5.5 V		± 0.1		± 1		± 1	$\mu \mathrm{A}$	
ICC	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND,	$10=0$	5.5 V		8		160		80	$\mu \mathrm{A}$	
C_{i}					10		10		10	pF	

[^0]
DUAL 2-LINE TO 4-LINE DECODERS/DEMULTIPLEXERS

SCHS332 - MARCH 2003
switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		UNIT
				MIN	MAX	MIN	MAX	
tPLH	A or B	Any Y	$C_{L}=50 \mathrm{pF}$		131		119	ns
tPHL					131		119	
tPLH	$\overline{\mathrm{G}}$	Any Y	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$		131		119	ns
tPHL					131		119	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		UNIT
				MIN	MAX	MIN	MAX	
tPLH	A or B	Any Y	$C_{L}=50 \mathrm{pF}$	3.7	14.7	3.9	13.4	ns
tPHL				3.7	14.7	3.9	13.4	
tPLH	$\overline{\mathrm{G}}$	Any Y	$C_{L}=50 \mathrm{pF}$	3.7	14.7	3.9	13.4	ns
tPHL				3.7	14.7	3.9	13.4	

switching characteristics over recommended operating free-air temperature range, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 0.5 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	LOAD CAPACITANCE	$\begin{gathered} -55^{\circ} \mathrm{C} \text { to } \\ 125^{\circ} \mathrm{C} \end{gathered}$		$\begin{gathered} -40^{\circ} \mathrm{C} \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		UNIT
				MIN	MAX	MIN	MAX	
tPLH	A or B	Any Y	$C_{L}=50 \mathrm{pF}$	2.6	10.5	2.8	9.5	ns
tPHL				2.6	10.5	2.8	9.5	
tPLH	$\overline{\mathrm{G}}$	Any Y	$C_{L}=50 \mathrm{pF}$	2.6	10.5	2.8	9.5	ns
tPHL				2.6	10.5	2.8	9.5	

operating characteristics, $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

	PARAMETER	TYP	UNIT
$\mathrm{C}_{\text {pd }} \quad$ Power dissipation capacitance	83	pF	

PARAMETER MEASUREMENT INFORMATION

\dagger When $\mathrm{V}_{\mathrm{CC}}=1.5 \mathrm{~V}, \mathrm{R} 1=\mathrm{R} 2=1 \mathrm{k} \Omega$
LOAD CIRCUIT

VOLTAGE WAVEFORMS
RECOVERY TIME

VOLTAGE WAVEFORMS
PROPAGATION DELAY AND OUTPUT TRANSITION TIMES

VOLTAGE WAVEFORMS PULSE DURATION

VOLTAGE WAVEFORMS SETUP AND HOLD AND INPUT RISE AND FALL TIMES

VOLTAGE WAVEFORMS
OUTPUT ENABLE AND DISABLE TIMES

NOTES: A. C_{L} includes probe and test-fixture capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 1 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}}=3 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$. Phase relationships between waveforms are arbitrary.
D. For clock inputs, $f_{\max }$ is measured with the input duty cycle at 50%.
E. The outputs are measured one at a time with one input transition per measurement.
F. tpLH and tpHL are the same as tpd.
G. tPZL and tPZH are the same as ten.
H. tPLZ and tPHZ are the same as $\mathrm{t}_{\text {dis }}$.
I. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A). D. The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)
8 PINS SHOWN

PIMS	8	14	16
A MAX	0.197 $(5,00)$	0.344 $(8,75)$	0.394 $(10,00)$
	0.189	0.337	0.386
	$(4,80)$	$(8,55)$	$(9,80)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-012

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments
Post Office Box 655303
Dallas, Texas 75265

[^0]: \dagger Test one output at a time, not exceeding 1 -second duration. Measurement is made by forcing indicated current and measuring voltage to minimize power dissipation. Test verifies a minimum $50-\Omega$ transmission-line drive capability at $85^{\circ} \mathrm{C}$ and $75-\Omega$ transmission-line drive capability at $125^{\circ} \mathrm{C}$.

